Skip to main content

Posts

Showing posts from March, 2019

combinatorics

Permutations and combinations Binomial coefficients An ordered Set  a 1 ,  a 2 ,…,  a r  of  r  distinct objects selected from a set of  n  objects is called a permutation of  n  things taken  r  at a time. The number of permutations is given by  n P n  =  n ( n  − 1)( n  − 2)⋯ ( n  −  r  + 1). When  r  =  n , the number  n P r  =  n ( n  − 1)( n  − 2)⋯ is simply the number of ways of arranging  n  distinct things in a row. This expression is called the factorial   n  and is denoted by  n !. It follows that  n P r  =  n !/( n  −  r )!. By convention 0! = 1. Combinatorics and Pascal’s Triangle Let’s calculate some values of  n C r . We start with 0 C 0. Then we find 1 C 0 and 1 C 1. Next, 2 C 0, 2 C 1 and 2 C 2. Then 3 C 0, 3 C 1, 3 C 2 and 3 C 3. We can write d...